Low NO_x Standards, Not-To-Exceed In-Use Testing Program

Public Workshop to Discuss Potential Changes to the Heavy-Duty Engine and Vehicle Emission Standards, Test Procedures, Warranty, and Other Related Heavy-Duty Programs

> November 3, 2016 Diamond Bar, California

California Environmental Protection Agency

Outline

- Establish Lower NO_X Emission Standard
- Evaluation of the Heavy-Duty In-Use Testing Program
 - Current program
 - Possible modifications to NTE
 - Alternatives to NTE
- Next steps/Workgroup

Establish Lower NO_X Emission Standard

Current Heavy-Duty Engine Standards

- 2010 and newer model year HD engines
 - NOx: 0.20 g/bhp-hr
 - PM: 0.01 g/bhp-hr
- Optional low-NO_X standards
 - Adopted in 2013
 - NOx: 50%, 75%, 90% lower than 2010 standards
 - Two engines certified to the optional standards
 - 8.9 liter natural gas engine 0.02 g/bhp-hr (90% below standard)
 - 6.7 liter natural gas engine 0.10 g/bhp-hr (50% below standard)

Establish Low-NO_X Heavy-Duty Engine Standard

Goal:

- Develop HD low-NO_X engine standard
- Develop low-load certification cycle
- Work collaboratively with U.S. EPA to establish national low-NO_x engine standard

Timeframe:

- ARB Board date: 2019
- Implementation schedule: 2023 2027

R&D on Low NOx Demonstration

ARB R&D - Diesel and Natural Gas Engines (Stage 1)

- Optimize emissions on the FTP, RMC, Idle, and WHTC
- Target NO_x emission rate: 0.02 g/bhp-hr (90% reduction) over the FTP
- Contractor: Southwest Research Institute (SwRI)
- Cost: \$1.6 million

ARB R&D – Low Load Optimization (Stage 2)

- Optimize system for low load vocational driving
- Develop new low load certification cycle
- Evaluate metrics for in-use testing under low load
- Contractor: SwRI
- Cost: \$1 million

Planned ARB R&D

- Complement Stage 1 and 2 effort with additional diesel engine
 - Representative of future engine configuration
 - Potential support from partners: U.S. EPA, MECA, air districts, etc.

Evaluation of the In-Use Testing Program

Current Heavy-Duty In-Use Testing Program

- In-use testing ensures that engines meet applicable emission standards throughout their useful life
- HDIUT program adopted in 2005 by U.S. EPA and in 2006 by ARB
- ARB and U.S. EPA jointly select engine families to be tested
- Manufacturers recruit fleets, conduct testing using Portable Emissions Measurement Systems (PEMS)
- Test data and results submitted to ARB and U.S. EPA
- Data is analyzed under the Not-to-Exceed (NTE) requirements

Current Criteria for Valid NTE Events

- 1. Inside NTE control area
 - > 30% max power
 - > 30% max torque
 - > 15% European Stationary Cycle speed (rpm)
- 2. Temperature conditions
 - > 250°C (for SCR aftertreatment)
 - Meet minimum intake manifold/engine coolant temperatures
- 3. At least 30 consecutive seconds meeting above criteria
- Emissions value: workspecific average of 1 Hz data within each NTE event

Most Data Excluded from Emissions Evaluation under Current Program

- Data from 245 tests show
 - Average (mean) data in NTE events included: 5.8%
 - Median: 3.5%
- Potential changes to NTE to reduce data exclusion and increase NO_x evaluated
 - Expand NTE control area
 - Reduce minimum torque
 - Reduce minimum power
 - Lower aftertreatment out temperature minimum
 - Reduce minimum duration of NTE event
 - New guidance on when testing should be conducted

- Demonstrate effects of modifying NTE parameters on amount of data available for emissions evaluation
- Characteristics of test used in case study
 - Vehicle Type: Line Haul
 - Trailer Type: Refrigerated
 - Distance traveled: 260 miles
 - Duration of test: 11.2 hours
 - Non-idle time: 5.6 hours
 - 239 ft net elevation change
 - Region: South

Under Existing NTE Conditions

Parameter	Threshold
Torque	30%
Power	30%
Aftertreatment Temp.	250 °C
Time	30 seconds

Results	
# Events	44
% Time in events	7.1%
without idle	14.6%
% NO _X in events	8.4%
without idle	10.5%
NO _x Pass Ratio	1.00

Lower Time Threshold: 20 seconds

Parameter	Threshold
Torque	30%
Power	30%
Aftertreatment Temp.	250 °C
Time	20 seconds

	This case	Base case
# Events	63	44
% Time in events	8.2%	7.1%
without idle	16.9%	14.6%
% NO _X in events	9.7%	8.4%
without idle	12.2%	10.5%
NO _x Pass Ratio	1.00	1.00

- Intake Manifold Temperature
- Power
- RPM
- NTE Event

- Aftertreatment Out Temperature
- Torque
- Duration

Lower Torque and Power Thresholds

Parameter	Threshold
Torque	20%
Power	20%
Aftertreatment Temp.	250 °C
Time	30 seconds

	This case	Base case
# Events	48	44
% Time in events	9.2%	7.1%
without idle	19.0%	14.6%
% NO _X in events	9.8%	8.4%
without idle	12.4%	10.5%
NO _x Pass Ratio	1.00	1.00

- Intake Manifold Temperature
- Power
- RPM
- NTE Event

- Aftertreatment Out Temperature
- Torque
- Duration

▶ Lower Temperature Threshold: 200 °C

Parameter	Threshold
Torque	30%
Power	30%
Aftertreatment Temp.	200 °C
Time	30 seconds

	This case	Base case
# Events	45	44
% Time in events	7.2%	7.1%
without idle	14.8%	14.6%
% NO _X in events	8.6%	8.4%
without idle	10.8%	10.5%
NO _x Pass Ratio	1.00	1.00

Intake Manifold Temperature

Power

RPM

NTE Event

- Aftertreatment Out Temperature
- Torque
- Duration

Multiple Parameters

Parameter	Threshold
Torque	20%
Power	20%
Aftertreatment Temp.	200 °C
Time	20 seconds

	This case	Base case
# Events	70	44
% Time in events	10.7%	7.1%
without idle	22.0%	14.6%
% NO _X in events	11.5%	8.4%
without idle	14.5%	10.5%
NO _x Pass Ratio	1.00	1.00

Intake Manifold Temperature

Power

RPM

NTE Event

- Aftertreatment Out Temperature
- Torque
- Duration

Multiple Parameters

Parameter	Threshold
Torque	10%
Power	10%
Aftertreatment	No
Temp.	Exclusion
Time	10 seconds

	This case	Base case
# Events	144	44
% Time in events	15.7%	7.1%
without idle	32.3%	14.6%
% NO _X in events	22.0%	8.4%
without idle	27.6%	10.5%
NO _x Pass Ratio	0.94	1.00

Intake Manifold Temperature

Power

RPM

NTE Event

- Aftertreatment Out Temperature
- Torque
- Duration

Test Season Affects Number of Events

 Testing in colder months leads to additional cold temperature NTE exclusions

Further study on merits of a guidance for time of year and region to test; ambient conditions on day of

testing

Impact of Changing Individual Parameters

- The amount of data included in NTE events is increased to 22% under the scenarios presented
- Data is screened out by multiple parameters
 - Point may not be added by relaxing one parameter since another parameter may still exclude the data point
 - Multiple parameters need to be changed to have effect
- Staff will continue analyses of modifications to the NTE parameters and impacts of a guidance on testing conditions

Work-Based Moving Average Window Method

- Adopted in the European Union as part of Euro VI
- Emissions evaluated over segments of data (windows)
 - Work over window equal to work over certification cycle
 - Average power over window meeting percentage of max power
 - Brake-specific emissions: Total emissions emitted in window divided by total work done in window
 - Window emissions ranked and emissions at 90th percentile used to determine compliance
 - Does not have separate temperature-based exclusions

Determining Valid Windows

- Work done each second is added until the cycle work is accumulated (FTP work in this example)
- Average Power = Window work / window duration
- Window is valid if average power > 20% max

European Union Program

- Work-based moving averaging windows used in Euro VI's In-Service Conformity program
- Testing done over prescribed route, rather than under revenue service
 - Route consisting of urban, rural, and highway segments
- Minimum 50% of windows must be valid
 - Valid window: average power ≥ 20% max power
 - Euro VI undergoing changes to lower limit to 10%
- Compliance threshold of 1.5 times certification standard (no measurement accuracy margin)

Analysis of Work-Based Moving Average Window on Existing Data

- Analyze the same test data as earlier, this time utilizing the work-based window method
 - The engine work done over the FTP was used to define the window work
 - Four average power thresholds used

	30% Power	20% Power	15% Power	10% Power
% Windows Valid	31.9%	40.2%	44.4%	52.2%
90 th Percentile Emissions (g/bhp-hr)	0.34	0.58	0.80	0.91
% Time in valid windows	6.1%	8.9%	10.9%	16.2%
% NO _x Emissions in valid windows	9.0%	13.1%	17.0%	25.8%

Other Alternatives

- Other alternatives for analyzing PEMS data also exist, including
 - Speed binning (Netherlands Organisation for Applied Scientific Research)
 - Power binning (University of Technology Graz)
- ARB's contract with SwRI will evaluate metrics for in-use testing under low load
 - Grams of NO_x per unit fuel consumed
 - Grams of NO_X per unit CO₂ emitted

Next Steps

- Staff will continue to analyze data under different scenarios
- Projected Board Hearing Date: 2019
 - Additional workshops will be scheduled
- Heavy-duty in-use compliance/testing/NTE workgroup
 - Stakeholders are invited to participate to provide input on staff's ongoing work
 - Additional on-road testing data of heavy-duty vehicles would be greatly appreciated

Rulemaking Schedule

- Board Hearing: 2019
- More workshops will be planned
- Contact:
 - Henry Cheung
 - henry.cheung@arb.ca.gov
 - · (626) 575-6673